

From Resource Efficient Cleaner Production (RECP) to Circular Economy (CE)

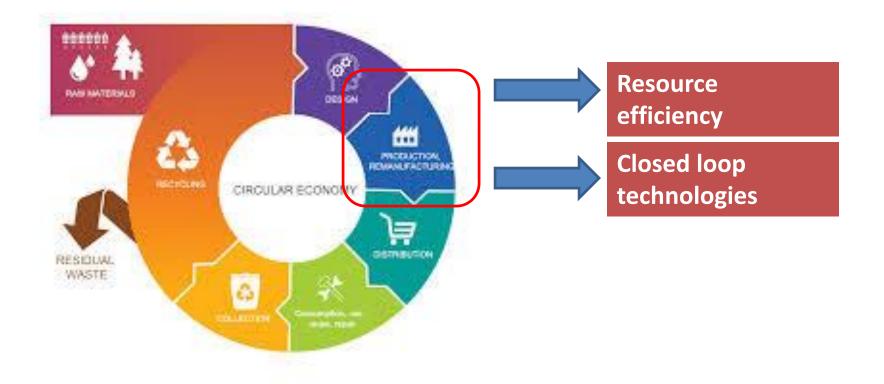
Applications in the Indian metal finishing & steel rolling industries

M Balakrishnan

The Energy and Resources Institute (TERI) Darbari Seth Block, India Habitat Centre Lodi Road New Delhi 110 003, India

1st International Conference on Resource Efficiency and Circular Economy 21 January 2020, Waters Edge, Bataramulla, Sri Lanka

ENERGY



SECURITY

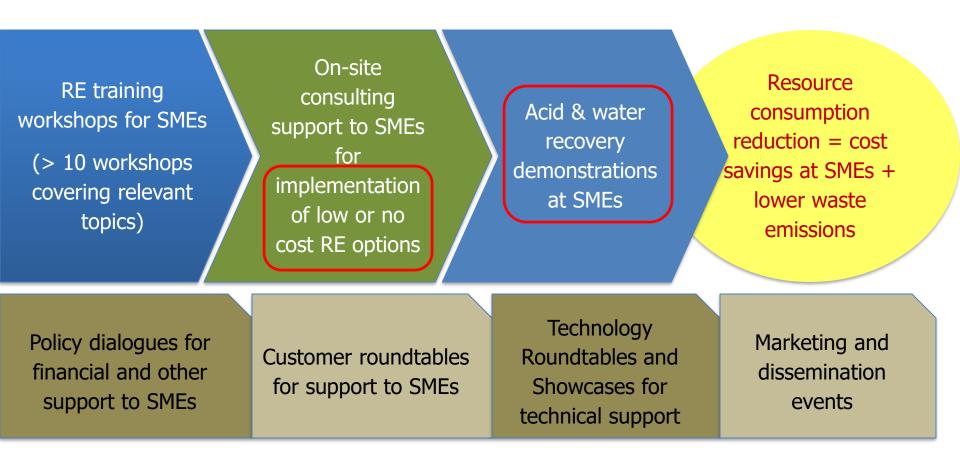
Focus of this presentation

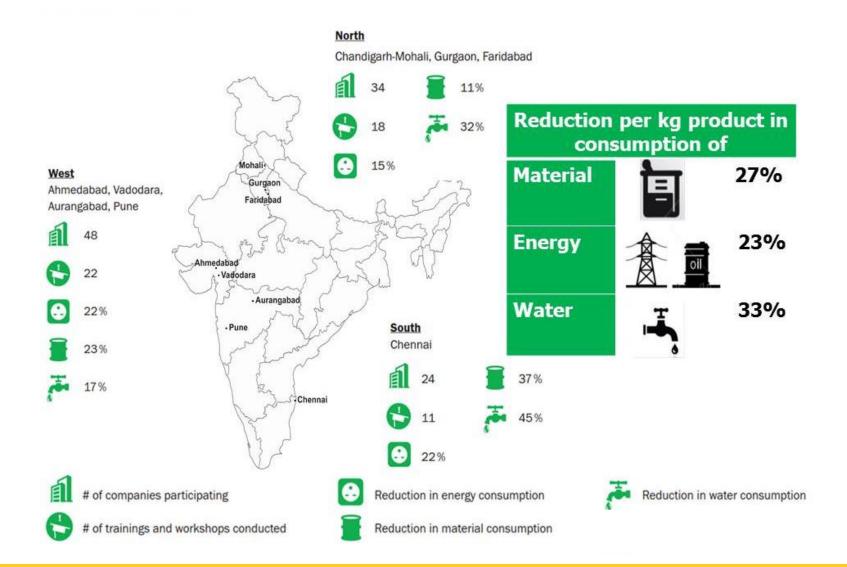
https://s3-eu-west-1.amazonaws.com/europarl/circular_economy/circular_economy_en.svg

Background of Indian metal finishing & steel rolling sectors

- Metal finishing (e.g. electroplating, painting) surface treatment processes to improve wear and tear resistance, impart corrosion resistance and enhance aesthetics
- Electroplating
 - Mainly small and medium enterprises (SMEs)
 - Part of the supply chain for automobiles, 2-wheelers, engineering equipment and consumer goods
 - Estimated 12,000 organized & approx. 300,000 small scale units in clusters across India
 - Generate highly acidic waste streams and hazardous sludge
 - Classified by Central Pollution Control Board (CPCB) as one of the major polluting industries
- Steel rolling
 - Employs acid pickling
 - Around 1800 small and medium sized steel rolling enterprises across India
 - Contribute ~70% of long steel output (bars, sections, industrial products etc.)

Indian metal finishing SMEs (electroplating, powder coating, steel rerolling)




PROJECT IMPLEMENTED BY

Achievements – resource efficiency (I)

Energy (electricity & fuel)				kWh/year			
Electricity	1,607,361	kWh					
Diesel	2,479,605	MJ					
LPG + PNG	14,406,911	MJ					
Coal + wood	4,587,246	MJ					
CO2 emission avoided 25% - 2,289 ton/year							
with low cost or no cost interventions by the							

MSMEs themselves. Most interventions payback period less than 9 months

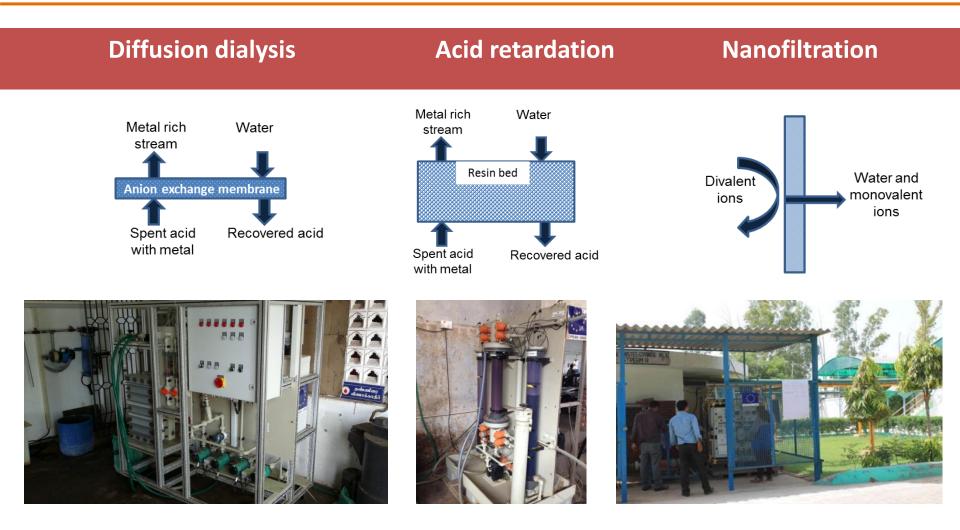
Current practice

- Neutralization of used acid and rinsing water
- Dewatering of sludge and disposal in landfills
- Discharge or evaporation of filtrate

Effects

 High water and acid consumption

Resource efficient rinsing water management

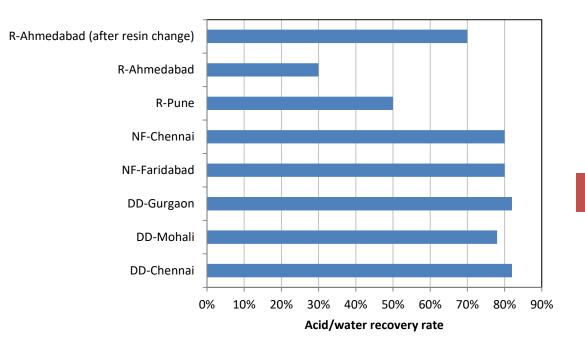

- Separation of metal ions with **nanofiltration** or **reverse osmosis**
- Recycling of the rinsing water (up to 80%)
- Discharge or reuse of the concentrate

Resource efficient acid management

- Separation of the metal ions with nanofiltration, diffusion dialysis or retardation
- Reuse of the treated acid (up to 30%)
- Disposal or reuse of the concentrate
- Reduced sludge amount (up to 30%)

Technologies for acid, water recovery in metal SMEs

Balakrishnan et al., Demonstration of acid and water recovery systems: Applicability and operational challenges in Indian metal finishing SMEs, Journal of Environmental Management (2018) 217, 207-213



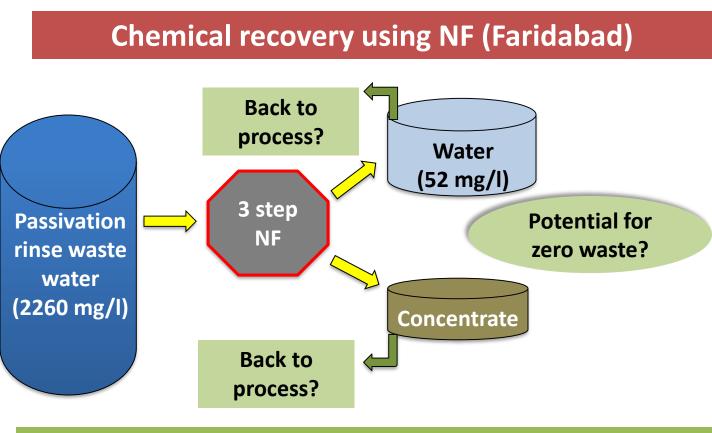
Demonstration details

-	Technology	Location	Process	Feed
	Diffusion	Chennai	Electroplating	Hydrochloric acid
	dialysis	Mohali	Electroplating	Sulphuric acid
		Gurgaon	Electroplating	Sulphuric acid
\$ T	Acid	Pune	Electroplating	Non-fuming hydrochloric acid
ES P		Ahmedabad	Pickling (steel rerolling unit)	Mixed acid (sulphuric H ₂ SO ₄ , nitric HNO ₃ , and hydrofluoric HF)
	Nanofiltration	Faridabad	Metal finishing common effluent treatment plant (CETP)	Effluent after chemical coagulation/flocculation and clarification
Record care		Chennai	Electroplating	Rinse water from zinc plating
		Aurangabad	Electroplating	Rinse water from zinc plating

Achievements: closed loop technologies (I)

Recovery rate of acid/water by the demonstration plants at different locations (DD-diffusion dialysis; NF- nanofiltration; R-retardation)

Retardation: HCl recovery (Pune)



Retardation: mixed acid recovery (Ahmedabad)

- Product contains active acid which can be reused
- By-product contains nickel which can be recovered

Achievements: closed loop technologies (II)

Challenges

- Efficient pretreatment (oil/particulate matter free feed)
- High material and temperature compatibility
- Operation within SME limitations (e.g. limited infrastructure and operational & analytical capacity)

Solutions?

- Local manufacturing combined with plant customizing to suit local requirements
- Cluster level service

In conclusion

- RE approach can successfully reduce resource consumption
- Pollution can be minimised through process improvements at no/low cost
- Remaining waste streams can be treated to recover useful components for feeding back to process

Need to replicate and multiply ... for near zero discharge

Contribution to various SDGs

Acknowledgements

- Ambattur Electroplaters Association (Chennai)
- Electroplating Industrial Welfare Association (Gurgaon)
- Faridabad Small Scale
 Pollution Control Co-op.
 Society (Regd.) (Faridabad)
- Mohali Industries Association (Mohali)
- Pune Metal Finishers Association (Pune)
- Stainless Steel Re-Rollers Association (Ahmedabad)

Thank You

RESOURCE SECURITY

& NUTRITION