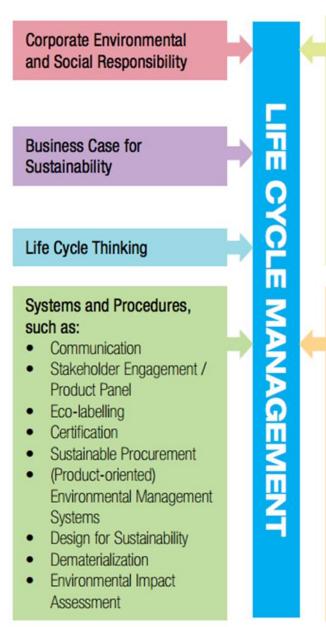
Dr. Asela Kulatunga is a senior lecturer at the Faculty of Engineering, University of Peradeniya. He eamed Bachelors in Production Engineering from University of Peradeniya and PhD in Industrial Engineering from University of Technology, Sydney, Australia and gLink Erasmus Mundus Research Fellow at University of Bremen Germany. He is an expert of LCA, Eco Design and Sustainable Manufacturing with more than 12 years of experience. He has involved in several projects funded by UNEP, UNIDO and UNEP-SETAC initiative. He is a Senior Member of Institute of Industrial & Systems Engineers -USA, Chartered Member of Institute of Logistics & Transport (UK), Member of European Roundtable on Sustainable Consumption & Production. He is an Accredited Professional of Green Building council of Sri Lanka and currently serves GBCSL as a Green label consultant and a member of expert panel developing Green Label guidelines Version 2.0.

LCA Experiences in Sri Lankan Context; Potential Business and Economic Sectors for LCA Application

Dr. Asela K. Kulatunga Head Department of Manufacturing & Industrial Engineering Faculty of Engineering University of Peradeniya Sri Lanka



International Conference on Resource Efficiency and Circular Economy

- Life Cycle Thinking (LCT) is adopting a **holistic approach in sustainability** related decision making(UNEP, 2007).
- LCT identifies both opportunities and risks of a product or technology, all the way from raw material extraction to the final disposal of a used product and can range from a qualitative life cycle thinking to a comprehensive life cycle assessment, where overall environmental impact of a product or service is quantified.
- This approach **prevents sub optimization** and **shifting of environmental burdens** from one environmental medium to another and/or from one life cycle stage to another.
- The LCT supports life cycle management (LCM), which aims at minimizing environmental and socioeconomic burdens associated with an organization's product or product portfolio during their entire life cycle and value chain.
- LCT is an important component in achieving the real objectives of sustainable development goals (SDGs) such as SDG 9 – Industry, Innovation, and Infrastructure, SDG11 – Sustainable Cities and Communities, and SDG12 – Sustainable Consumption and Production since LCT facilitates identifying priorities of interventions based on the areas for highest opportunities and managing potential tradeoffs.

Data, Information and Models, such as:

- Databases
- Best Practice, e.g.
 - » Benchmarks
 - » Standards
 - » Weighting Schemes
- Models, e.g.
 - » Dose-Response
 - » Fate and Exposure
 - » Scenario

Tools and techniques, such as:

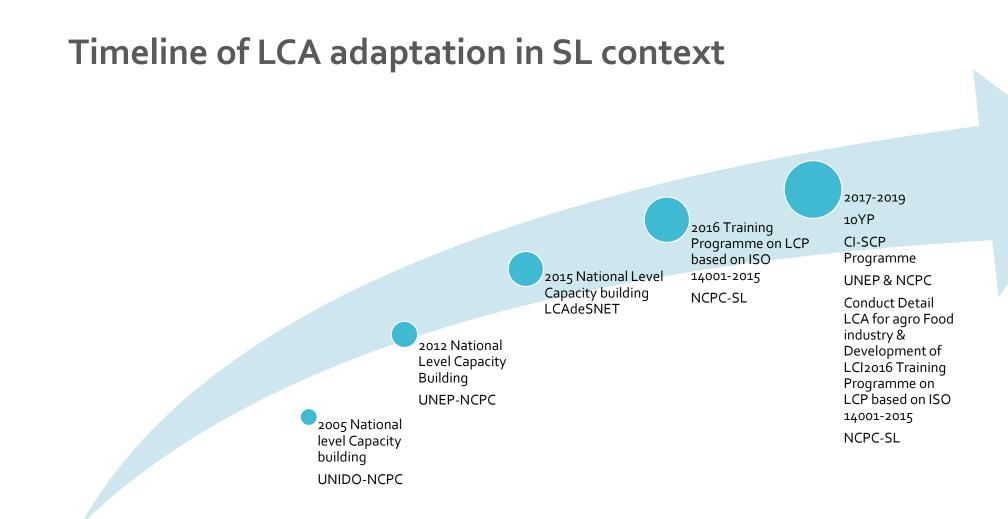
- Life Cycle Assessment
- Life Cycle Costing (LCC)
- Cost-benefit Analysis (CBA)
- Material and Substance Flow Analysis (MFA/SFA)
- Input-Output Analysis (IOA)
- Material Input per Unit of Service (MIPS)
- Cumulative Energy Requirements Analysis (CEPA)
- Cleaner Production Assessment (CPA)
- Risk Assessment (RA)
- Audits

Source: UNEP/SETAC. Life Cycle Management: A Business Guide to Sustainability. Paris, 2007.

International Conference on Resource Efficiency and Circular Economy

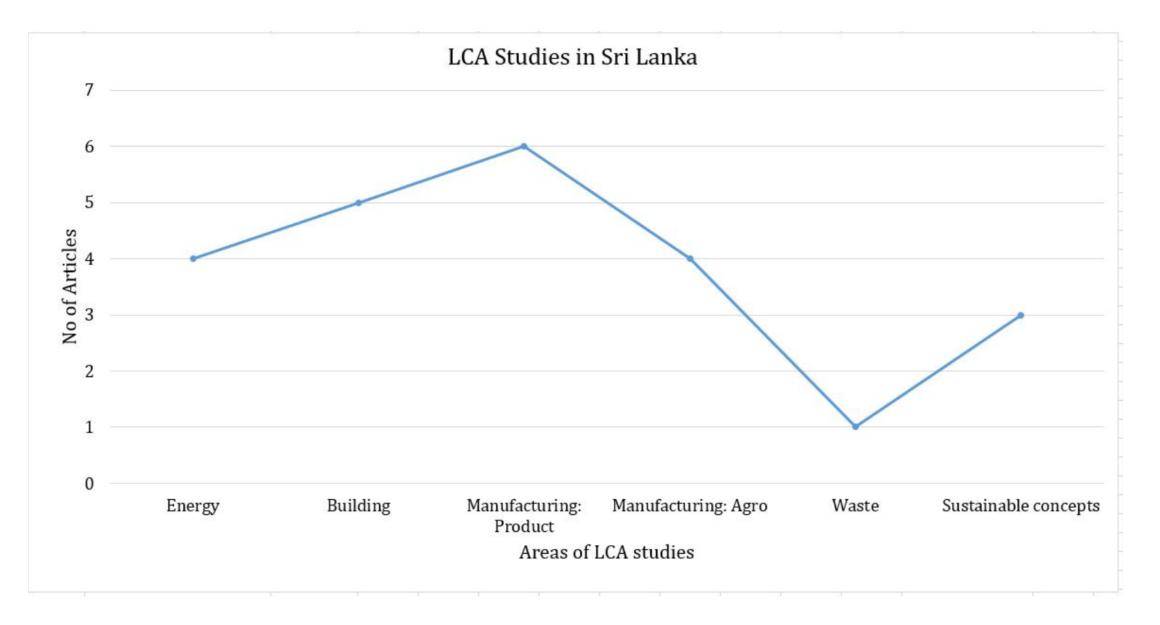
Contents

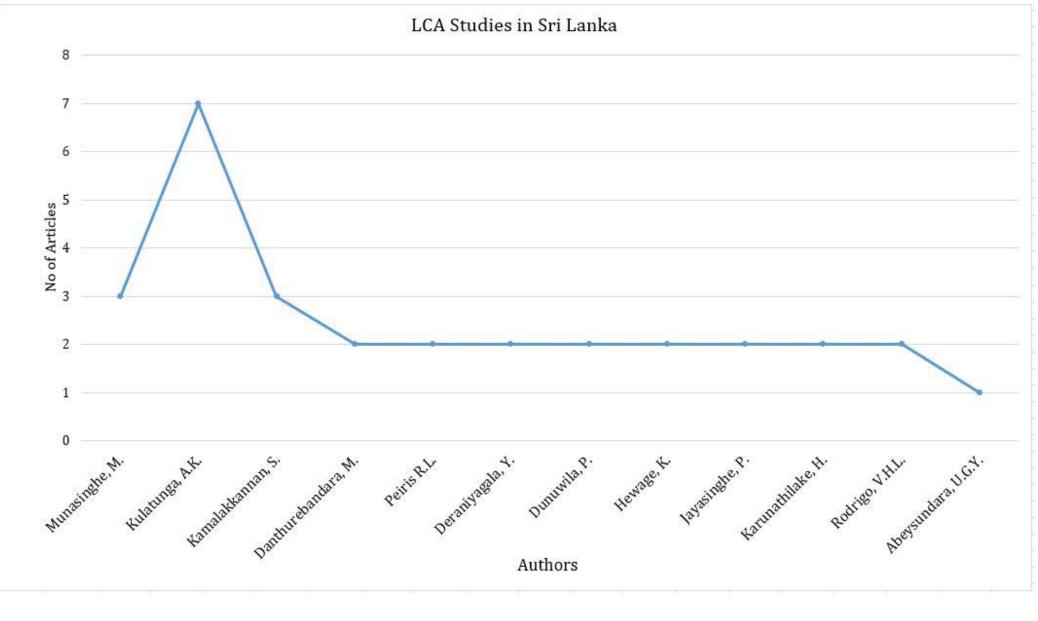
- Overview of LCA in Sri Lanka
- Timeline of LCA adaptation in SL context
- Current status
- Sectors which have economic & Business potential for LCA
- Case studies
- Conclusion



Overview of LCA in Sri Lanka

- Evolution
 - 2005 to present
- Level of penetration
 - Awareness to policy intervention
- Areas of Penetration
 - Agriculture to manufacture to waste to Product Design DSS's
- Educational Programmes
 - Awareness workshops to degree programmes
- Resource Pool


5



International Conference on Resource Efficiency and Circular Economy

6

International Conference on Resource Efficiency and Circular Economy

0

Л

76 document results

(TITLE-ABS-KEY("life cycle assessment*" OR "life cycle management*" OR "LCA" OR "life cycle analysis*" OR "life cycle thinking*" OR "environmental impact assessment*") AND TITLE-ABS-KEY("Sri Lanka*"))

🤌 Edit 😬 Save 👃 Set alert 🚮 Set feed

Search within results	۹.	Documents Secondary documents Patents			
Refine results	1	100 Analyze search results		Show all abstracts Sort on: Date (newest)	~
Limit to Exclude		All - Export Download View citation overview View cited by Add to List ••••			
Access type ①	^	Document title	Authors	Year Source C	Cited by
Open Access Other	(6) > (70) >	□ 1 A conceptual methodology for estimating embodied carbon emissions of buildings in Sri Lanka	Nawarathna, A., Alwan, Z., Gledson, B., Fernando, N.	2020 Smart Innovation, Systems and Technologies 163, pp. 83-95	0
Year	*	View abstract \checkmark Find Full Text VIew at Publisher Related documents			
2020	(1) >	2 Assessment of Pollution Sources, Fate of Pollutants, and Potential Instream Interventions to Miti	gate Gomes, P.I.A., Fernando, B.A.V.W., Dehini, G.K.	2019 Water, Air, and Soil Pollution	0
2019	(8) >	Pollution of Earthen Canals of Urban to Rural-Urban Fringe		230(11),262	
2018	(8) >	View abstract -> Find Full Text View at Publisher Related documents			
2017	(5) >				
] 2016 /iew more	(10) >	Assessment of groundwater quality in CKDu Affected areas of Sri Lanka: Implications for drinking water treatment Open Access	g Cooray, T., Wei, Y., Zhong, H., (), Weragoda, S.K., Weerasooriya, R.	2019 International Journal of Environmental Research and Public Health 16(10),1698	2
Author name	^	View abstract ~ Find Full Text View at Publisher Related documents			
Kulatunga, A.K.	(5) >	4 Performance of water efficiency measures in commercial buildings	Sousa, V., Silva, C.M., Meireles, I.	2019 Resources, Conservation and Recycling	1
] Kamalakkannan, S.	(3) >			143, pp. 251-259 Activate Windows	
🗌 Munasinghe, M.	(3) >	View abstract ~ Find Full Text View at Publisher Related documents		Go to Settings to activate Windows	Ŝ.
Babel, S.	(2) >				

LCA expert	Affiliation	Area of focus
Dr. Erandi Lokupitiya	University of Colombo	Agriculture & Livestock, forestry
Dr. Janaka Gamage	University of Moratuwa	Machining Processes
Dr. Maheshi Senanayake	University of Moratuwa	Chemical processes
Prof. Parakrama Karunaratne	University of Peradeniya	Chemical processes
Dr. Asela K. Kulatunga	University of Peradeniya	Manufacturing, Agriculture, Construction industry
Dr. Maheshi Danturebandara	University of Peradeniya	Waste, Energy
Dr. Sampath Wahala	University of Sabaragamuwa	Forestry
Dr. Y. Abeysundara	Ministry of Education	Buildings
Prof. M. Munasinghe		Agriculture, Energy

28-Jan-20

LCA Type	Definition	Example
Contribution Analysis	Comparing impact contribution from different sources of process or product	 Comparison of process stages in manufacturing phase (ex: Withering, Rolling, Drying) Comparing main 4 phases of product life cycle (Pre- Manufacturing, manufacturing, Use, Disposal) Comparing different product specifications (600x600 floor tile with 300x600 floor tile)
Scenario Analysis	Comparing different impact levels in different scenarios of life cycle	 Comparing different practices of the manufacturing product of a process (ex: Semi-Conventional practice vs Modern Practice) Comparing different technologies (Hot air generation by boiler with furnace)
Uncertainty Analysis	Identifying variation and plotting the distribution of impact for different exchanges	 Fitting the biomass firing impact to a normal distribution and identifying the effectiveness
Sensitivity Analysis	Identifying the sensitivity (tendency to change impact) of exchanges	 Identifying the expected data quality of exchanges during data collection Declaring LCA cut-off values for a new product
Parametric Analysis	Optimizing environmental impacts based on parameters of a product or process	 Optimization of GWP of a product by changing thickness (t) and water absorption (WA) from tiles

International Conference on Resource Efficiency and Circular Economy

n-20 General LCA	Standard LCA	Advantages of Standard LCA
Conduct according to the common sense of developer	Conduct according to ISO14040-14044 standard framework	Can be compared due to common structure
Data is collected by plant data recording system	Data is collected by a specifically designed data collection inventory booklet	Comfortable for calculations
Only scope is defined based on phase check points Ex: Cradle to Grave, Cradle to Gate, Gate to Gate)	 System boundary is defined based on 4 aspects Aggregation Boundary Geographical Boundary Scope Boundary Life Cycle Level Boundary 	Easy to determine all relevant life cycles
Only consumption and production data s collected (process data)	Uncertainty data is collected in addition to process data	Data quality can be estimated
Only primary data is collected by plant	Secondary data is collected from other sources in addition to primary data	Country specific assessment and more accurate
nventory results is interpreted by exchange data	Detailed inventory results are interpreted as exchange summary report, balance sheets and data quality matrices	High data reliability
Commonly carbon foot is calculated	Detailed calculations are done by impact assessment methods (IPCC GWP100a, ReCiPe)	Useful to initialize eco-designs
Environment Impact Assessment (EIA) s conducted manually	Life Cycle Impact Assessment (LCIA) is conducted by advanced LCA software (Ex: SimaPro)	More accurate calculations and ability to link with international databases

Business Opportunities through LCA

- Branding and Marketing purposes
- Penetrate into different markets (international)
- Optimize the Processes & Supply chains
- Reduce Resource Consumption in Manufacturing processes
- Decide the appropriate technologies / methods for economical and low carbon scenarios

Sectors which have economic & Business potential for LCA

- Constriction industry
 - Buildings
 - Constriction Materials
- Agro food industry
 - Tea
 - Cinnamon
 - Coconut Products
- Apparel. Garments & Textiles
- Export oriented other products
 - Natural & Synthetic Rubber products

Ex: Building LCA : LEED Requirements

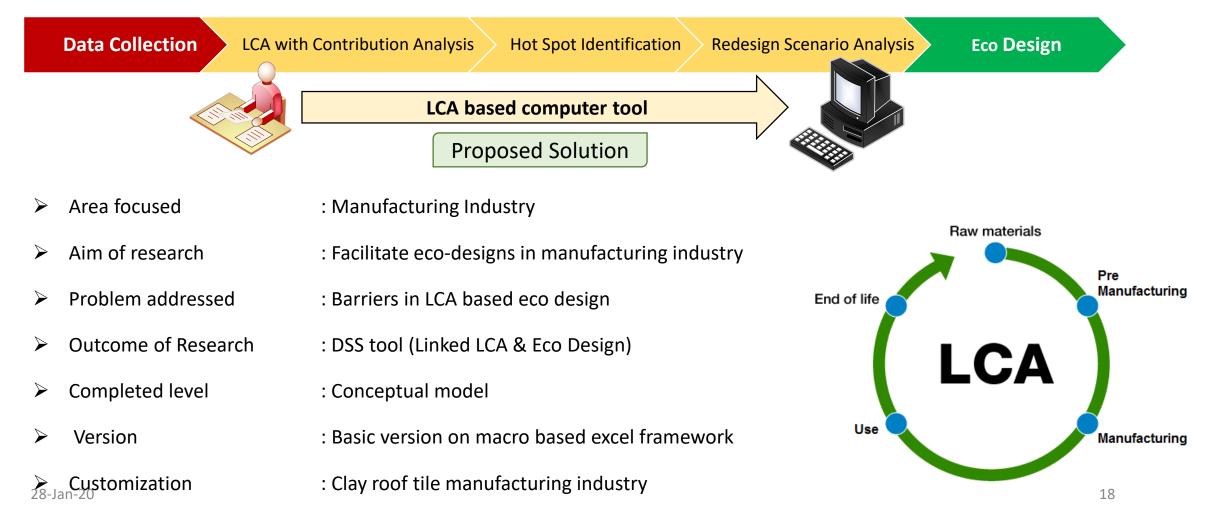
- Worth of 3 points of LEED green building rating program
- Need to conduct a **Cradle to Grave** study
- Required to compare LCA's of two building designs- (Reference & Proposed)
- Need the results of both buildings in six LCA metrics
 - Global Warming Potential (kg CO₂ eq.)
 - Acidification (kg SO₂ eq.)
 - Eutrophication (kg N eq.)
 - Ozone depletion (kg CFC-11 eq.)
 - Smog (kg O₃ eq.)
 - Non Renewable Primary Energy (MJ)

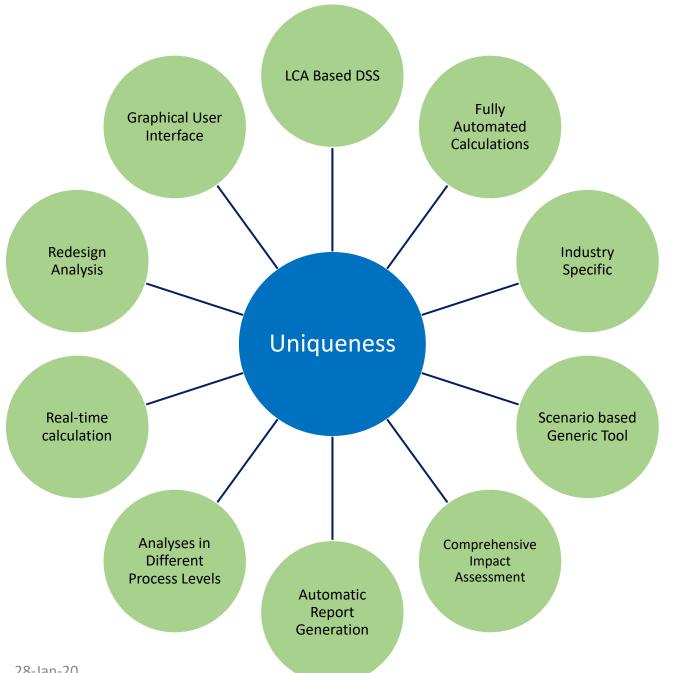
Building LCA according to LEED

- Minimum 10% reduction in **Proposed Building** for at least three impact indicators,
- One of them must be GWP
- Maximum 5% increase for any impact indicator
- Minimum life span of 60 years to be considered

Life Cycle Assessment based tool for Eco-Design in manufacturing sector

R. L. Peiris*, A. K. Kulatunga, K.B.S.N Jinadasa

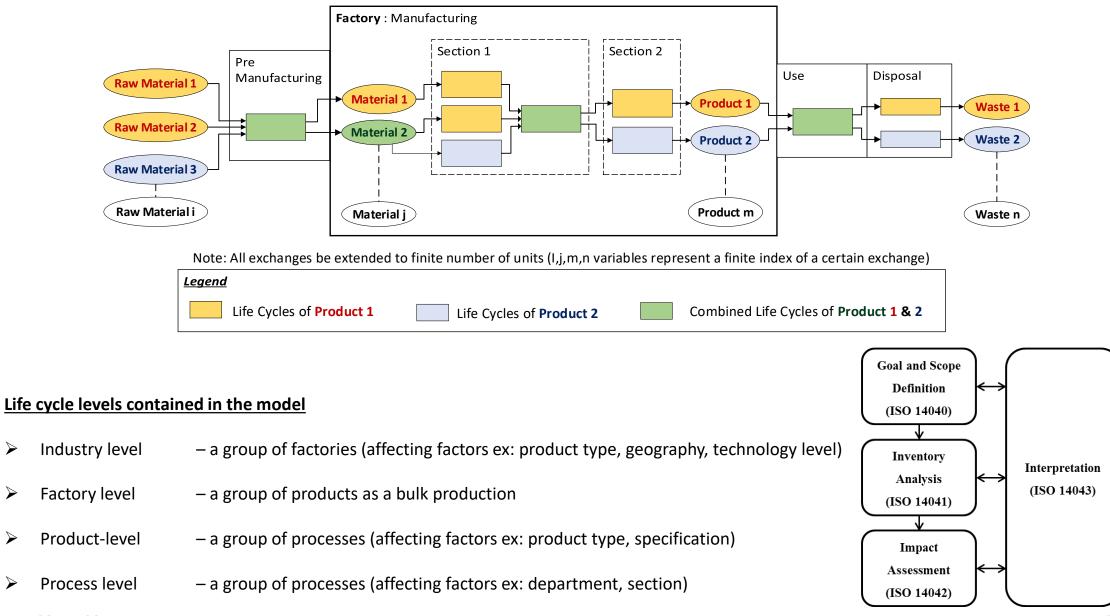

Department of Manufacturing & Industrial Engineering Faculty of Engineering University of Peradeniya Peradeniya


Introduction

Key Elements

- Life Cycle Assessment (LCA)
- Eco Design (ED)
- Decision Support System (DSS)

- Scientific methodology for environment performance analysis
- Product or process design to reduce environment impacts in industries
- Supporting framework to get eco friendly decisions for industries

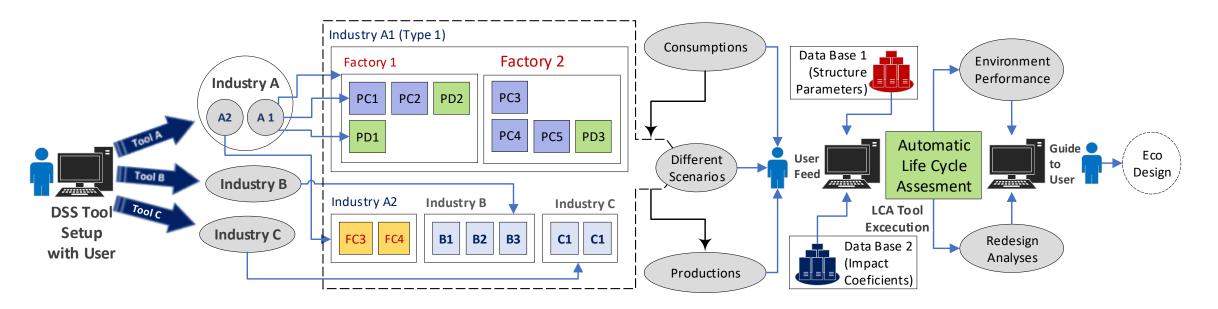

Uniqueness of the model

Benefits of proposed model

- Less human interaction \geq
- \geq Time saving
- Ease of use \geq
- \geq Professional results interpretation
- No need of research background \geq
- Finally, enhance sustainability \succ

Architecture of DSS

28-Jan-20


 \geq

 \triangleright

 \succ

20 **ISO Framework for LCA**

Overview of the DSS model

Executional flow of the DSS model

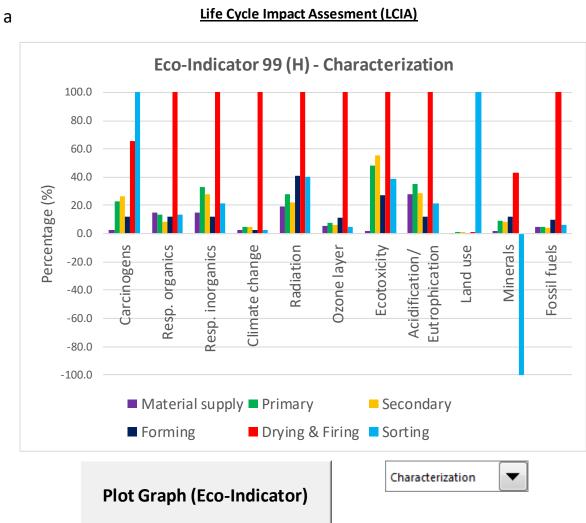
Selection of tool

 \geq

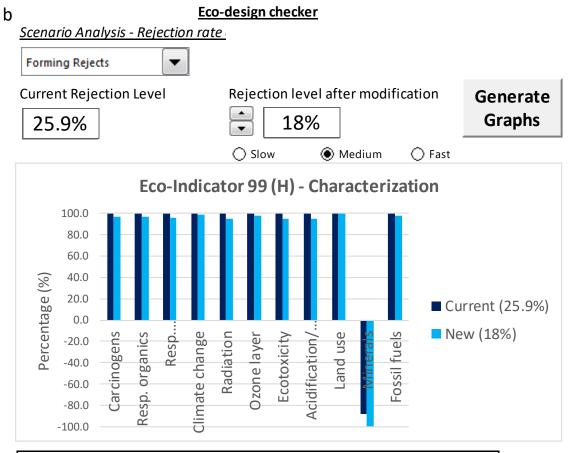
 \succ

 \succ

Setup of DSS model


Development of LCI

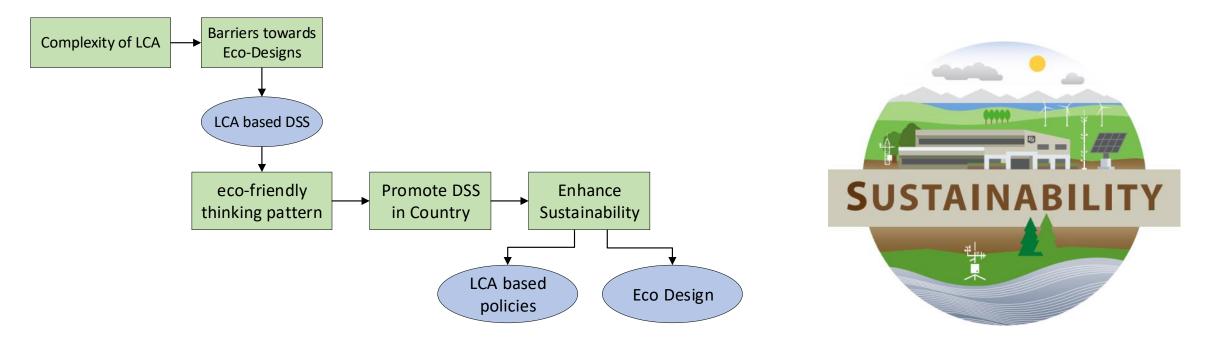
Development of LCIA


- Selection of relevant tool which was specially designed by developer for particular industry
- Configuration of the system for each resource/process/product scenario for particular setup
 - Record of consumptions and productions of system within system boundary
- Calculation of environment performances based on LCI and pre-defined Impact Coefficient Database
- Automatic report generation to identify environment hotspots
- Scenario analysis to estimate environment performance gain of redesign

- Interpretation
- ➤ 28Redesign scenario analysis

Validation with Case Study and Discussion

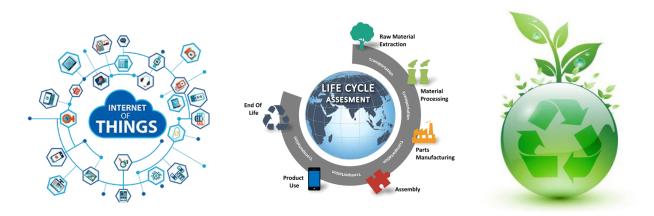
Report on Environment Performance Analysis


EI99(H) - Characterization											
Impact Category	Carcin.	Res. Org.	Res. Ino.	CC	Radiation	Ozone	Ecotox.	Acid.	Land	Mineral	Fossil
Reduction %	2.8	3.4	4.4	1.4	4.6	2.4	4.8	5.0	0.3	11.4	2.0

Report on Environment Performance Gain of Redesign

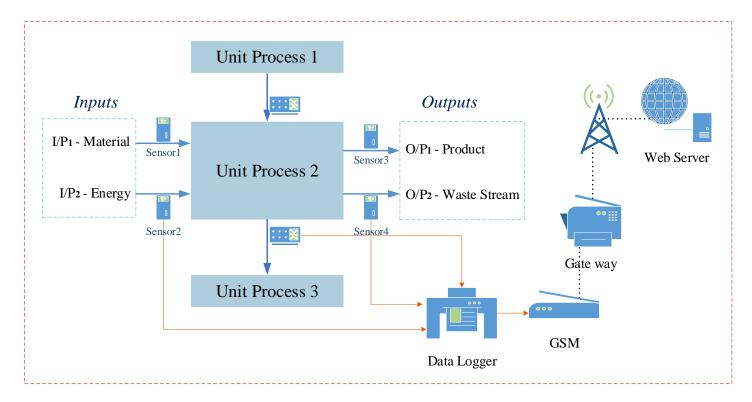
Outcome

How DSS drives system towards sustainability . . .


On going research...

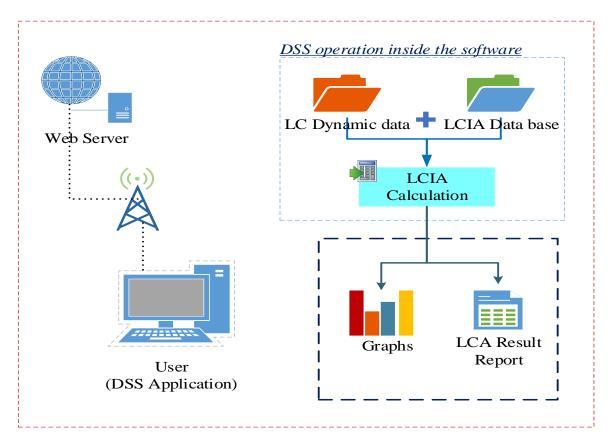
- Realize the conceptual model to a software available in cloud based environment
- Integration of automatic data feeding by Industry 4.0 based IoT techniques

The conceptual framework of IoT based decision support system for life cycle management

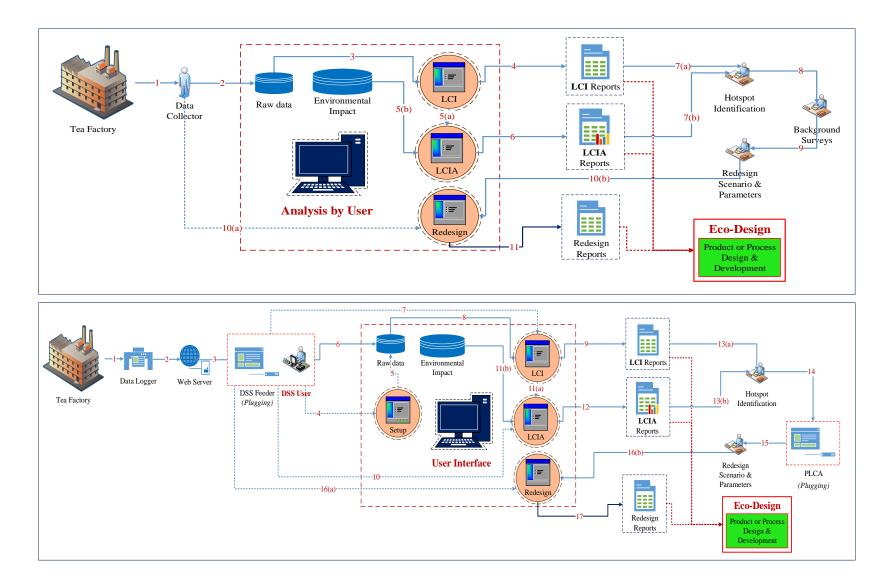


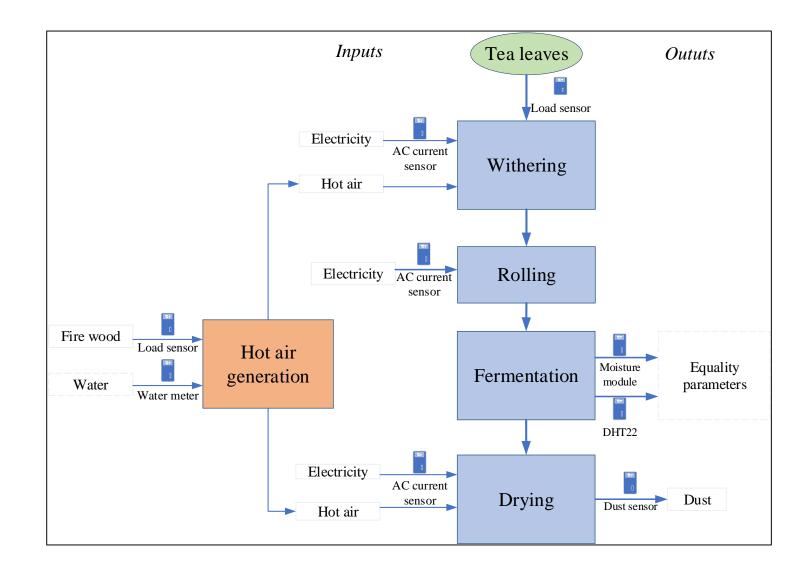
S. Kamalakkannan*, A. K. Kulatunga, L.A.D.A.D. Bandara

Department of Manufacturing & Industrial Engineering University of Peradeniya, Sri Lanka

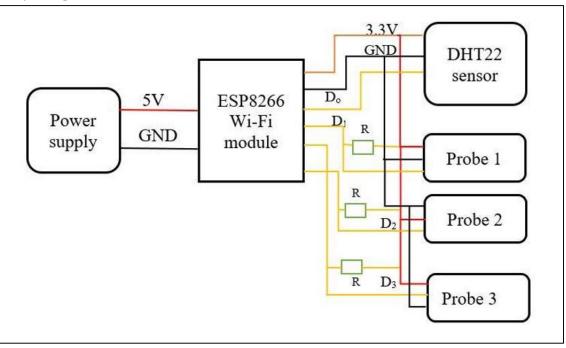

IoT based Dynamic Data Collection

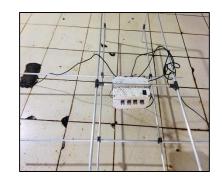
- Input & Output parameters of unit processors are monitored using appropriate seniors
- Sensor network is connected to a cloud environment via data logger and GSM network



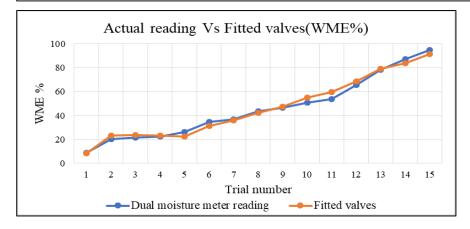

Decision Support System

- Cloud base DSS web application tool provides instructions and guidance to facilitate the Eco-designs.
- DSS tool is capable to generate LCA reports
- Through the user interface, user is able to calculate and generate the LCA report to identify the hotspot and Ecodesign possibilities


Existing and proposed framework for LCM



IoT installation in the factory region...



• Primarily the applied sensors were properly calibrated and the mathematical equations were formulated using the analytical software "Minitab".

> Model Summary										
S 3.43118	-	q(adj) R- 98.25%	sq(pred) 85.24%							
Coefficients										
Term	Coef	SE Coef	T-Value	P-Value	VIF					
Constant	461.9	31.7	14.58	0.000						
S1	-21.24	1.88	-11.29	0.000	1371.10					
S1^2	0.3399	0.0350	9.70	0.000	5630.60					
S1^3	-0.001799	0.000207	-8.70	0.000	1522.51					

Dual moisture meter reading (WME%)	Fitted valves
9	8.167268
20.23	23.08089
21.34	23.62228
22.34	23.33433
26.38	22.40029
34.58	31.16022
36.74	36.07516
43.43	42.06942
46.66	47.29927
50.64	55.17077
53.8	59.47664
65.58	68.33189
78.22	78.95373
87.3	83.88034
94.8	91.24877

Sensor calibration and data analysis

4. Developed Local LCI Dataset for Construction Industry

Clay Roof Tiles – Semi Conventional Practice

System Boundaries

- Scope Boundary : Cradle to Gate
- Geographical Boundary : Single Plant, Kurunegala District, North Western province, Sri Lanka
- Aggregation Boundary : Considered the only one production specification of roof tiles
- ✤ Life Cycle Level Boundary:
 - ➤ Life cycles of infrastructure and capitals were neglected.
 - Small contributions of waste streams were neglected lower than 5%
 - ➤ Non-material emissions (Ex: Noise) were neglected.

Table 01: Exchange Summary Report – Semi-Conventional type manufacturing(Functional Unit: Coverage of 1m2 effective area of roof)

Exch	Exchange Summary Table (per m ²) – Semi-Conventional type clay roof tile manufacturing										
		per	r m²	Section wise allocation (%)					Pedigree matrix		
Exchange Type	Resource	Unit	Amount	MN	M/F	ND	F/S	WS			
Raw Material	Main clay materials	kg/m ²	51.79	100					[3,4,3,1,1]		
	Water	kg/m ²	13.22		100				[2,2,3,1,1]		
	Biomass-Wood logs	m^3/m^2	0.028				100		[3,4,3,1,1]		
Energy	Biomass-Wood powder	kg/m ²	4.680				100		[3,4,3,1,1]		
	Electricity	kWh/m ²	1.872		100				[2,2,3,1,1]		
	Dried scrap rejects (Recycling)	kg/m ²	9.330			100			[5,4,3,1,1]		
Disposing & Emissions	Fired rejects (Landfill)	kg/m ²	0.320					100	[5,4,3,1,1]		
	Evaporated water	kg/m ²	14.77			66.4	33.6		[4,4,3,1,1]		
Overall Transport	Road transport	tkm/m ²	4.297						[3,4,3,1,1]		
	Diesel – Internal transport	kg/m ²	0.034		100				[3,4,3,1,1]		

[MN-Main material flow, M/F-Milling & Forming, ND-Natural Drying, F/S-Firing & Sorting, WS-Waste Scenarios]

Clay Roof Tiles – Modern Practice

System Boundaries

- Scope Boundary : Cradle to Gate
- Geographical Boundary : Single Plant, Anuradhapura District, North Central Province, Sri Lanka
- ✤ Aggregation Boundary : Aggregated all specifications of clay roof tiles
- Life Cycle Level Boundary:
 - ➤ Life cycles of infrastructure and capitals were neglected.
 - Small contributions of waste streams were neglected lower than 5%
 - > Non-material emissions (Ex: Noise) were neglected.

Table 02: Exchange Summary Report – Modern type manufacturing
(Functional Unit: Coverage of 1m2 effective area of roof)

	Exchange Sumn	ary Table (per	· m²) – Moder	n type c	lay roo	of tile n	nanufa	cturing	ş		
Exchange		per	• m²	Section wise allocation (%)							
Туре	Resource	Unit	Amount	М	PR	SC	FM	D/F	ST	DP	Pedigree matrix
Main	Main clay material	kg/m ²	51.7	100							[3,4,3,1,1]
Material	Waste body material (Reused)	kg/m ²	2.9	100							[5,4,3,1,1]
Flow	Crushed roof tile powder	kg/m ²	2.9	100							[5,4,3,1,1]
	Water	kg/m ²	21.0		92.1	6.6	1.3				[4,4,3,1,1]
Auxiliary	BaCO3	kg/m ²	0.0		100						[3,2,3,1,1]
Materials	Coconut Oil	kg/m ²	0.0				100				[5,5,3,1,1]
	LP Gas	kg/m ²	4.2					100			[1,2,3,1,1]
Energy	Diesel	kg/m ²	0.0	20.2	19.5	9.0	40.1		11.2		[1,2,3,1,1]
	Electricity	kWh/m ²	3.6		24.2	29.4	11.7	34.7			[2,2,3,1,1]
	Shrink wrapping	kg/m ²	0.1				77.6		22.4		[1,1,3,1,1]
Packaging	Wood pallets	kg/m ²	1.7						100		[1,1,3,1,1]
Materials	Strapping	kg/m ²	0.0						100		[1,1,3,1,1]
	Black polythene	kg/m ²	0.0						100		[1,1,3,1,1]
	Body mix rejects (Recycling)	kg/m ²	34.5				100				[4, 4,3,1,1]
	Dried scrap rejects (Recycling)	kg/m ²	24.2					100			[4,4,3,1,1]
Disposing &	Fired rejects (Recycling + Landfill)	kg/m ²	9.2						31.3	31.3	[4,4,3,1,1]
Emissions	Dusty water	kg/m ²	2.1							100	[4,4,3,1,1]
	Coconut Oil	kg/m ²	0.0							100	[5,4,3,1,1]
	Diesel	kg/m ²	0.0							100	[4,4,3,1,1]
	Evaporated water	kg/m ²	16.8							100	[3,4,3,1,1]
	Thermoplastic wastage	kg/m ²	0.1							100	[2,4,3,1,1]
Overall	Road transport	tkm/m ²	1.9								[2,2,3,1,1]
Transport	Transoceanic transport	tkm/m ²	391.2								[2,2,3,1,1]

[M-Main material flow, PR-primary section, SC-Secondary section, FM-Forming section, D/F-Drying/Firing, ST-Sorting, DP-Disposal]

Roofing Scenario Comparison

System Boundaries

- Scope Boundary : Cradle to Grave
- Geographical Boundary : Three districts in Sri Lanka: Kurunegala District, Anuradhapura District and Colombo District; Global data: Eco-invent database
- Aggregation Boundary : Aggregated all roofing materials as an assembled product called roof
- Life Cycle Level Boundary:
 - ➤ Life cycles of infrastructure and capitals were neglected.
 - Small contributions of waste streams were neglected lower than 5%
 - > Non-material emissions (Ex: Noise) were neglected.

Table 03: Exchange summary report for benchmarking LCA of clay cladded roof *(Functional Unit: Coverage of 400 ft² effective floor area of a single storey building)*

			Roof Scenario / Cladding Type										
Phase	Exchange	Unit	Clay Tile - Semi		Clay Tile	e - Modern	PVC She	et	Asbesto	s Sheet			
			Case 1	Case 2	Case 1	Case 2	Case 1	Case 2	Case 1	Case 2			
	Cladding material	kg	3852.8	3852.8	4045.4	4045.4	500.8	500.8	884	884			
	Ridge tiles	kg	88.10	88.10	88.10	88.10	18.3	18.3	88.1	88.1			
	Rafters	kg	208.5	128.3	208.5	128.3	156.5	293.4	205.4	176			
Pre manufacturing	Battens	kg	123.9	185.8	123.9	185.8	75.2	150.3	64.4	120.8			
	Ridge	kg	63.0	63.0	63.0	63.0	63.0	63.0	63.0	63.0			
	Steel brackets	kg	68.8	42.3	68.8	42.3	42.3	42.3	74	47.6			
	Steel fasteners	kg	1.10	0.70	1.10	0.70	1.10	1.10	0.7	0.7			
Manufacturing	Transport (Road)	tkm	433.6	431.8	452.9	451.1	81.4	102.6	130.5	133.2			
(Construction)	Transport (Ocean)	tkm	206.1	206.1	206.1	206.1	206.1	206.1	206.1	206.1			
Use	Electricity	kWh	126534				123625		126970				
	Incineration-wooden	Kg	395.3	377.1	395.3	377.1	294.7	506.7	332.8	359.8			
	Landfill-Ceramic	kg	3940.9	3940.9	4133.6	4133.6	N/A	N/A	88.1	88.1			
Disposal	Landfill-Plastic	kg	N/A	N/A	N/A	N/A	519.1	519.1	N/A	N/A			
	Landfill-Steel	kg	69.9	43	69.9	43	43.3	43.3	74.7	48.3			
	Landfill-Asbestos	kg	N/A	N/A	N/A	N/A	N/A	N/A	884	884			

Ceramic Floor Tiles

System Boundaries

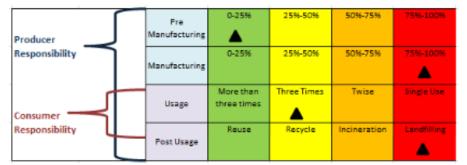
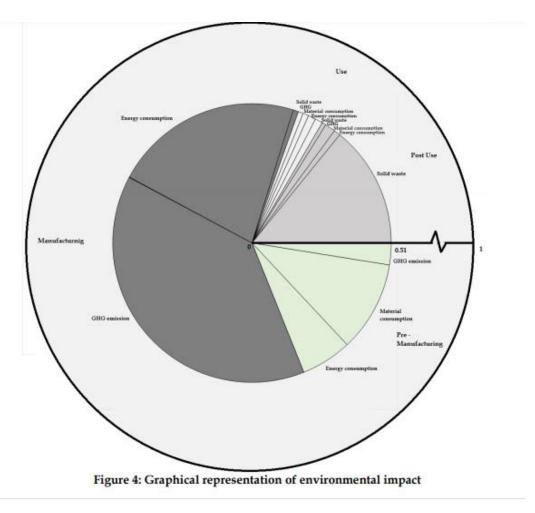

- Scope Boundary : Cradle to Gate
- Geographical Boundary : Single Plant, Colombo District, Western Province, Sri Lanka
- ✤ Aggregation Boundary : Aggregated all sizes and designs of floor tiles
- ✤ Life Cycle Level Boundary:
 - ➤ Life cycles of infrastructure and capitals were neglected.
 - Small contributions of waste streams were neglected lower than 5%.
 - > Non-material emissions (Ex: Noise) were neglected.

Table 04: Interpretation of Exchange Summary Report (ESR) – Ceramic floor tile(Functional Unit: Coverage of 1m2 area of floor)


	Exchange Summary	Table – Pro	duction of	f floor	tile to	o cover	• 1 m ²	floor a	rea			
Exchange Type		per	Section wise allocation (%)								Pedigree matrix	
	Resource	Unit	Amount	MF	РР	ML	SD	P&D	G&P	FR	S&P	
	Ball day	kg/m ²	6.710	100								[1,2,2,1,1]
	Silica sand	kg/m ²	3.580	100								[1,2,2,1,1]
Main material flow	Dolomite	kg/m ²	0.890	100								[1,2,2,1,1]
	Feldspar	kg/m ²	11.18	100								[1,2,2,1,1]
	Water	kg/m ²	7.910			77	23					[2,2,2,1,1]
Auxiliary materials	Glaze mixture	kg/m ²	6.800						100			[1,1,2,1,1]
	Printing ink	g/FU	11.71						100			[1,1,2,1,1]
Energy	LP Gas	kg/m²	2.750				33	15	52.3			[3,1,2,1,1]
	Electricity	kWh/m ²	4.880		0.2	19.7	2.9	27.5	10.2	26.4	13.1	[2,1,2,1,1]
Packaging Materials	Cardboard	g/m ²	129.5								100	[1,1,2,1,1]
	Polythene	g/m ²	15.30								100	[1,1,2,1,1]
Disposed material	Landfilled rejects	kg/m ²	1.310						51.2	48.8		[4,4,2,1,1]
	Evaporated water	kg/m ²	5.990									[3,4,2,1,1]
	Transport-Road	tkm/m ²	2.478									[2,2,2,1,1]
Overall Transport energy	Transport-Transoceanic	tkm/m ²	7.053									[2,2,2,1,1]
	Transport-Air	tkm/m ²	0.033									[2,2,2,1,1]
	Transport-Internal transport	g/m²	9.250									[2,2,2,1,1]

MF – Main Flow, PP – Primary Process, ML – Milling, SD – Spray Drying, P&D – Pressing & Drying, G&P – Glazing & Printing, FR – Firing, S&P – Sorting & Packaging

LCA based Green Labels

The Environmental Label Based On the Case Study Done in House Hold Glove Manufacturing in Sri Lanka Based On Life Cycle Assessment

Conclusion

- LCT is one of the holistic approach to promote sustainability
- It has evolved in Sri Lankan context for last 25 years
- Reached to several sectors over the period of time
- Availability of LCA experts to handle industry /country needs
- Policy interventions have been initiated
- Advanced research and LCA based analytical tools have been developed
- LCA based Green Labels have been evolved in Sri Lankan context
- Its right time for corporate sector to harness the benefits if LCT and LCM to be competitive in Global Markets

International Conference on Resource Efficiency and Circular Economy

