Hold a Ph. D. in Civil Engineering from Sherbrooke University in Canada

Started his professional career in 1989 as Research Engineer for the Industrial chair on concrete technology and the Network of Centre of Excellence on High Performance Concrete in Canada

Joined Corporate Holcim Group Support in Switzerland in 1998 and hold several positions until 2017 in the area of R&D, Open Innovation, Advanced Concrete Technology & Technology Transfer

Since January 2018 Joined INSEE Lanka Ltd.

Society's Growing Need for Sustainable Construction

Dr. Moussa Baalbaki Head Products & Solutions Portfolio INSEE Lanka Ltd.

International Conference on Resource Efficiency and Circular Economy

First, we should recognize that the construction sector has a proud tradition of being one of humanity's oldest businesses

 Its work stands as testament to human progress and arguably enhances our quality of life

With the population growth and urbanization, the sector is in transition and is struggling with its role not in CSR but in sustainability

- challenged by changing customer and government expectations to further improve its social, economic and environmental impacts
- Cope with high pressure on demand on strategic resources as energy, raw materials and water
- ... and also human resources, as construction sector use one of the world's largest workforces (13% of the world's GPD is due to construction-related spending)
- → All these forces can drive up costs and force businesses to innovate and look for <u>alternatives</u>

5 Megatrends Driving Societal Needs for Sustainable Construction Solutions

Siam City Cement (Lanka) Limited ©SCCCL | All Rights Reserved.

World cement demand constantly increased and held up well during recession

In 2017 4500 **World Cement** 4.1**B** CEMENT CAGR* 1950-2008 (World): 5.4% 4000 Production 3500 Recession 6.3% EMBUREAU 2002 3000 Asian Crisis Financial Financial Finacial Oil Crisis 2500 Crisis Crisis Crisis 2008 CHINA INDIA USA 1997 1973 1981 1990 2000 1500 1000 6.8% 56.5% 2.1% 500 0 1970 2000 2010 1950 1960 1980 1990 In 2017 World w/o China EXAMPLE CEM demand forecast w/o china World World concrete Bm³ Production **10 Mm³** * CAGR = Compound average growth rate Source: Cembureau, The Global Cement Report 8th Edition, Internal Estimation

Shanghai development within 30 years

Port City development in Sri Lanka

Source: Dr. Thushara Priyadarshana

6

Buildings have an important ecological footprint...

Unfortunately we use these natural resources at a rate that cannot be sustained indefinitely

Siam City Cement (Lanka) Limited ©SCCCL | All Rights Reserved.

Building Materials are likely to become the next area of focus in sustainable building standards

Embodied carbon as part of life cycle carbon emissions

Source: the Green Building Council, ICE (Institution of Civil engineers)

*LEED: Leadership in Energy and Environmental Design: BREEAM: BRE Environmental Assessment Method: EPD: Environmental Product Declaration: PCF: Product Carbon Footprint

The retreat of Aletsch Glacier in the Swiss Alps due to global warming

1979

1991

Siam City Cement (Lanka) Limited ©SCCCL | All Rights Reserved.

2002

By 2025, 70% of cement demand will be in countries with carbon regulations

Therefore the construction sector must promote sustainable and performing solutions which:

- Emit less CO2 (Green House Gas)
- Offer extended service life of concrete structures with reduced maintenance cost
- Is economically viable
- Support the overall commitment to sustainable development

Cement types by continents

OPC dominant in countries, where SCM like limestone, fly ash and slag are added directly to concrete, e.g. N America and UK

Proven technology with <u>superior blended cements</u> for sustainable performing concrete

High grade limestone (Calcium carbonate)

Fly ash

Ground slag

New Manufacturing Excellence for Slag Based Solutions

- Technology: Modular grinding with 3rd generation compact Vertical Roller Mill
- Equipment supplied by Loesche GmbH, Germany
- Ability to produce customized products based on customer needs
- Enhanced flexibility in quality assurance due to the new technology
- Low energy consumption
- Minimum sound emission
- Minimum dust emission

INSEE products domestically sold since July 2017 OPC vs Blended cements share (%) - 400'000 t CO_2 saved every year

Siam City Cement (Lanka) Limited ©SCCCL | All Rights Reserved.

New low carbon cements based on burnt oil shale by legacy Holcim

Siam City Cement (Lanka) Limited ©SCCCL | All Rights Reserved.

17

Sand in fact has become a scarce resource...with an increasing media attention DIE DIE WELT

() 0:07 / 15:32

TEDx Talks

Ahon

🕂 Hinzufügen < Teilen 🚥 Mehr

TED

Let's talk about sand: Denis Delestrac at TEDxBarcelona

1.622.857

Boom By Laura Höflinge

insatiable.

Print F.Mai

Siam City Cement (Lanka) Limited ©SCCCL | All Rights Reserved.

Sandmining is destroying Asia's rivers

Uncontrolled and mostly illegal extraction of sand and rocks from riverbeds for construction is killing rivers acr South Asia and China, and must be tightly controlled

$\mathcal{D}\mathbf{I}\mathbf{L}$			11		7 300	zi testen	11		Suchen				Q
Home Politik	Wirtschaft	Geld	Sport	Wissen	Panorama	Feuilleton	ICON	Reise	PS WELT	Regional	Meinung	Videos	Mark
Home > In Aaien tobt	ein Sandkrieg	slamischer :	Staat" C	Ostukraine	Handball-WV							21. Jan. 20	5, 15:59
DIE©WEL	Т		DIE	WEL	ſ Digita	ıl 2 Mon	ate fü	r nur (0,99 €!				
Die Welt 19.01.15													
In Asier	1 tobt	ein	San	dkri	eg					¢			
Singapur und weltweit imm	d Malaysi er begeh	a streit rter _{Von}	en um Adrian L	eine k	ünstliche	Insel. Ro	hstoff	ra	ginf	IPFEI	HLEN		
werden,	um di	e St	ränd	le zu	erh?'	12	(15	Lire	r Krei	slauf.	In		
Indones	ien sir	nd ga	anze	2 ⁰ '	-0	No	nwu	nden	. In M	arokk	o stai	nmt	
die Hälft	e des	Sar		Ś	9110	llionen	Kub	ikme	eter, a	us ille	galen	San	d-
Minen. S	Sand	n G	12	o Jart	aben	einen	Stra	ndab	schni	tt bei	Essa	ouira	
in ein Be	nin	2	ber T	age	transt	formie	t. W	o eig	entlic	h Urla	uber	in de	r
Sonne a	im Stra	and	liege	en, st	ehen	nun La	astw	ägen	, die i	nit Sa	nd be	lade	n
werden.	Das (Geso	chäf	t blüł	nt, aud	h weil	die	Nacl	frage	nach	Sand	l stet	ig
steigt.	az Z	rgauer EITU	NG							Ċ	^{Mi} ₂1° (, Do 23°	
D×	Home	Leben	Forse	hung &	Technik								
						1.1813	1982		1				

S Wetter Ahn | Anmelde

Kinder bauen mit ihm Burgen, die Bauindustrie macht daraus Beton: Die Rede ist vom Rohstoff Sand. Weil er so begehrt ist, könnten die Ferien am Strand mit Sand am Meer bald der Vergangenheit angehören. Was gibt es für Alternativen?

Von Sabina Galbiat

0 = * - :

5.451

16 38 ØI :

Fine aggregates are referred to by many names

Manufactured sand processing alignment with INSEE M-Sand decision tree approach for quality assessment

20

Siam City Cement (Lanka) Limited ©SCCCL | All Rights Reserved.

Cubicity according to crusher type and crushing Stage – bear in mind fines are produced at each crusher stage in the circuit

2 HolcimShape M (0.3-4 mm) 23 sec * Shape improvement recommended to achieve higher performance	Crushing Stage					
Crusher Type	Primary stage	Secondary stage	Tertiary stage			
Jaw crusher	Poor	Poor	Poor			
Primary gyratory	Poor	NA	NA			
Horizontal shaft impactor	Fair	Fair / Good	Fair / Good			
Vertical shaft impactor	NA	Good	Good			
High speed cone crusher	NA	Fair	Good when operated correctly			
New design high pressure roll crusher	NA	NA	Good when operated correctly			

*slide adapted from Metso training materials

Crushers type

Crushing type for ABRASIVE Feed Material

• High Speed Cone Crusher with fine liner manganese selection

OR

- Rock-on-Rock Vertical Shaft Impactor (VSI) (note a VSI will have a lower ratio of reduction thereby will produce larger recirculating loads)
- Feeder velocity is often tied into the power draw of the crusher to maximize production and avoid crusher overload
- Do not forget CRUSHER PROTECTION with magnet or metal detector !

High Speed Cone Crusher

VSI Rock on Rock

Crushing type for NON-ABRASIVE Feed Material

Horizontal Shaft Impactor (HIS) noting that feed should fall across full width of interior rotor breaker bars

OR

- Rock-on-Metal Anvils Vertical Shaft Impactor (VSI)
- These type of impact crushers have a higher ratio of reduction thereby will produce a smaller recirculating loads than cone crusher circuits or VSI rock-on-rock circuits.
- Feeder velocity is often tied into the power draw of the crusher to maximize production and avoid crusher overload
- Do not forget CRUSHER PROTECTION with magnet or metal detector !

VSI Rock on Metal Anvils

Even being the most used universal construction material concrete is still prescriptively designed and its technology not well mastered

Concrete a universal construction material and a possible universal construction problem

Changing viewpoints

Necessity of taking a holistic approach to sustainability considering not only the environmental element

Performance based design

Used in strategic infrastructures since more than 2 decades

100 – 120 years specified service life design

Performance based specifications including durability indicators

Designed with superior blended cements (Slag, FA, LS, PZ, SF, etc)

- Collaboration space to enable a closer link with industry partners
- Engage an <u>effective collaboration</u> driven by **openness**, **speed** and **connectivity** with focus on creating shared values (CSV)

→ develop together innovative and efficient sustainable solutions for Sri Lanka

Monthly knowledge sharing session

- 13 Sessions organized since may 2018 at head office auditorium
- + 4 with central and provincials engineering department and IESL
- 1. Durability of Mass Concretes by Prof. Anura Nanayakkara, University of Moratuwa
- Sustainable Performing Concrete by Dr. Moussa Baalbaki, Head of Products & Solutions, INSEE Cement
- 3. Importance of Sustainable Constructions for Sri Lanka by Prof. Ranjith Dissanayake, University of Peradeniya
- High-Strength, High-Performance Concrete in Practice by Eng.W.J.B. Shiromal Fernando, Managing Director/Principal Structural Engineer, Civil & Structural Engineering Consultants (Pvt) Limited
- FIDIC Guidelines for Construction Project Management by Eng.Malith Mendis, Mendis Cobain Consultants(Pvt) Limited
- 6. High Performance Concrete with Novel Mineral Cement Additives by Dr. Thushara Priyadarshana, Open University of Sri Lanka
- 7. Eurocode for Performance based structural design by Dr. D. L Pradeep, Open University of Sri Lanka
- 8. Forensic Engineering by Prof. Ranjith Dissanayake, University of Peradeniya
- 9. Design and Construction Experiences in Mega Projects by Eng.Udayanga Alwis, , Managing Director/Principal Structural Engineer, Civil & Structural Engineering Consultants (Pvt) Limited
- 10. Managing Construction Timelines by Eng.Budhdhi Sathsara Perera, Sanken Constructions
- 11. Repair and Retrofitting of Structural Elements by Dr.Harsha Sooriyaarachchi, University of Ruhuna
- **12. Design of Shear-Critical Reinforced Concrete Elements** by Dr.Kushan Wijesundara, University of Peradeniya
- **13. Manufactured sand as an alternative to river sand** by Dr. Moussa Baalbaki, Head of Products & Solutions, INSEE Cement

Siam City Cement (Lanka) Limited ©SCCCL | All Rights Reserved.

Lecture on 'Sustainable Construction'

We Strengthen the Nation

Conducted by: Prof. Ranjith Dissanayake Senior Professor Department of Civil Engineering University of Peradeniya & Chairman Green Building Council of Sri Lanka

Date: 28th June 2018 Time: 6:00 - 7:30 p.m. Venue: Auditorium (2nd Floor) INSEE Cement Head Office 413, R. A. De Mel Mawatha, Colombo 03

Organized by: The Innovation & Application Centre

Clockwise from left:

Lotus Tower - INSEE Extra for durability and low carbon faotprint, Clearpoint Residencies - INSEE solutions building the world's tallest vertical garden,

INSEE Sanstha Concrete Bridge - First ever concrete bridge in Sri Lanka used for railway transport and daily transport, with over 7,000Mt of weight transported across the bridge daily.

International Conference on Resource Efficiency and Circular Economy

